Search results for "channel measurements"
showing 2 items of 2 documents
A Trajectory-Driven 3D Channel Model for Human Activity Recognition
2021
This paper concerns the design, analysis, and simulation of a 3D non-stationary channel model fed with inertial measurement unit (IMU) data. The work in this paper provides a framework for simulating the micro-Doppler signatures of indoor channels for human activity recognition by using radiofrequency-based sensing technologies. The major human body segments, such as wrists, ankles, torso, and head, are modelled as a cluster of moving point scatterers. We provide expressions for the time variant (TV) speed and TV angles of motion based on 3D trajectories of the moving person. Moreover, we present mathematical expressions for the TV Doppler shifts and TV path gains associated with each movin…
A Trajectory-Driven 3D Non-Stationary mm-Wave MIMO Channel Model for a Single Moving Point Scatterer
2021
This paper proposes a new non-stationary three-dimensional (3D) channel model for a physical millimeter wave (mm-Wave) multiple-input multiple-output (MIMO) channel. This MIMO channel model is driven by the trajectory of a moving point scatterer, which allows us to investigate the impact of a single moving point scatterer on the propagation characteristics in an indoor environment. Starting from the time-variant (TV) channel transfer function, the temporal behavior of the proposed non-stationary channel model has been analyzed by studying the TV micro-Doppler characteristics and the TV mean Doppler shift. The proposed channel model has been validated by measurements performed in an indoor e…